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ABSTRACT
While tremendously useful, automated techniques for tuning
the precision of floating-point programs face important scal-
ability challenges. We present Blame Analysis, a novel
dynamic approach that speeds up precision tuning. Blame
Analysis performs floating-point instructions using differ-
ent levels of accuracy for the operands. The analysis deter-
mines the precision of all operands such that a given preci-
sion is achieved in the final result. Our evaluation on ten
scientific programs shows Blame Analysis is successful in
lowering operand precision without sacrificing output pre-
cision. The best results are observed when using Blame
Analysis to filter the inputs to the Precimonious search-
based tool. Our experiments show that combining Blame
Analysis with Precimonious leads to finding better results
faster: the modified programs execute faster (in three cases,
we observe as high as 39.9% program execution speedup) and
the combined analysis time is up to 38× faster than Preci-
monious alone.

1. INTRODUCTION
Algorithmic [31, 3, 10] or automated program transforma-

tion techniques [25, 18] to tune the precision of floating-point
variables in scientific programs have been shown to signifi-
cantly improve execution time. Given a developer specified
precision constraint, their goal is to maximize the volume of
program data stored in the lowest native precision, which,
generally, results in improved memory locality and faster
arithmetic operations.

Since tuning floating-point precision is a black art that
requires both application specific and numerical analysis ex-
pertise, automated program transformation tools are clearly
desirable and they have been shown to hold great promise.
State-of-the-art techniques employ dynamic analyses that
search through the program instruction space [18] or through
the program variable/data space [25] using algorithms that
are quadratic or worse in the number of instructions or vari-
ables. Due to their empirical nature, multiple independent
searches with different precision constraints are required to
find a solution that improves the program execution time.

We attempt to improve the space and time scalability of
precision tuning with the program size using a two pronged
approach. We explore better search algorithms using a dy-
namic program analysis, refered to as Blame Analysis, de-
signed to tune precision in a single execution pass. Blame
Analysis does not attempt to improve execution time. We
then explore combined approaches, using Blame Analy-

sis to bootstrap our Precimonious [25] search-based tool
which has been designed to reduce precision and to improve
execution time.

While search-based tools attempt to determine an opti-
mal solution that leads to faster execution time, our Blame
Analysis is designed to determine a solution fast, using
a combination of concrete and shadow program execution.
The main insight of the analysis is that given a target in-
struction together with a precision requirement, one can
build a blame set that contains all other program instruc-
tions with minimum precision, type assignments for their
operands that satisfy the precision criteria for the original
instruction. As the execution proceeds, the analysis builds
the blame sets for all instructions within the program. The
solution associated with a program point is computed using
a merge operation over all blame sets.

We have implemented Blame Analysis using the LLVM
[20] compiler infrastructure and evaluate it on eight pro-
grams from the GSL library [11] and two programs from
the NAS parallel benchmarks [26]. We have implemented
both offline analyses on program execution traces, as well
as online analyses that execute together with the program.

When considered standalone, Blame Analysis was al-
ways successful in lowering the precision of all test programs;
it is effective in removing variables from the search space, re-
ducing it in average by 39.85% of variables, and in median,
by 28.34% of variables. As it is solely designed to lower
precision, the solutions do not always improve the program
execution time. The offline analysis is able to lower the pre-
cision of a larger number of variables than the online ver-
sion. However, as the trace-based approach does not scale
with the program size, only the online approach is practical.
We have observed runtime overhead for the online analysis
as high as 50×, comparable to other commercial dynamic
analysis tools.

The biggest benefits of Blame Analysis are observed
when using it as a pre-processing stage to reduce the search
space for Precimonious. When used as a filter, Blame
Analysis always leads to finding better results faster. To-
tal analysis time is 9× faster on average, and up to 38×
faster in comparison to Precimonious alone. In all cases in
which the result differs from Precimonious alone, the con-
figuration produced by Blame + Precimonious translates
into a program that runs faster. For three benchmarks, the
additional speedup is significant, up to 39.9%.

We believe that our results are very encouraging and in-
dicate that floating-point tuning of entire applications will
become feasible in the near future. As we now understand
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the more subtle behavior of Blame Analysis, we believe
we can improve both analysis speed and the quality of the
solution. It remains to be seen if this approach to develop
fast but conservative analyses can supplant the existing slow
but powerful search-based methods. Nevertheless, our work
proves that using a fast “imprecise” analysis to bootstrap
another slow but precise analysis can provide a practical so-
lution to tuning floating point in large code bases.

This work makes the following contributions:

• We present a single-pass dynamic program analysis for
tuning floating-point precision, with overheads compa-
rable to that of other commercial tools for dynamic
program analysis, such as Valgrind [21].

• We present an empirical comparison between single-
pass and search-based, dual-optimization purpose tools
for floating-point precision tuning.

• We demonstrate powerful and fast precision tuning by
combining the two approaches.

2. TUNING FLOATING-POINT PRECISION
Most programming languages provide support for the float-

ing point data types float (single-precision 32-bit IEEE 754
floating point), and double (double-precision 64-bit IEEE
754 floating point). Some programming languages also offer
support for long double (80-bit extended precision). Fur-
thermore, software packages such as QD [17] provide sup-
port for even higher precision (data types double-double

and quad-double). Because reasoning about floating-point
programs is often difficult given the large variety of numer-
ical errors that can occur, one common practice is using
the highest available floating-point precision. While more
robust, this can degrade program performance significantly.

The goal of floating point precision tuning approaches is
to lower the precision of as many program variables and in-
structions as possible, while (1) producing an answer within
a given error threshold, and (2) being faster with respect to
the original program.

Tools that operate on the program variable space are par-
ticularly useful as they may suggest permanent changes to
the application. For example, consider a program that de-
clares three floating-point variables as double x, y, z. The
analysis takes as input a required precision, e.g. 10−6, and
computes a type assignment over program variables. The
tool may map the variables to the following data types: x 7→
float, y 7→ double, and z 7→ float. This means that if we
rewrite the program to reflect the type changes, then it will
produce a result within the error threshold while running
faster.

One such state-of-the art tool is Precimonious [25], which
systematically searches for a type assignment for floating-
point program variables.

2.1 Scalability Challenges
Precimonious analysis time is determined by the execu-

tion time of the program under analysis, and by the number
of variables in the program. The algorithm Precimonious
uses requires program re-compilation and re-execution for
different type assignments. The search is based on the Delta-
Debugging algorithm [32], which exhibits a worst-case com-
plexity of O(n2), where n is the number of variables in the
program.

In practice, it is very difficult for programmers to predict
how the type of a variable affects the overall precision of
the program result and the Precimonious analysis has to
consider all the variables within a program, both global and
local. This clearly poses a scalability challenge to the overall
approach. In our evaluation of Precimonious (Section 4),
we have observed cases in which the analysis takes hours
for programs that have fewer than 50 variables and native
runtime less than 5 seconds. Furthermore, as the analysis
is empirical, determining a good solution requires repeating
it over multiple precision thresholds. A solution obtained
for a given precision (e.g. 10−6) will always satisfy lower
thresholds, e.g. 10−4. It is often the case that tuning for
a higher precision results in a better solution than tuning
directly for an original target lower precision.

To our knowledge, Precimonious and other automated
floating point precision tuners [25, 18] use empirical search
and exhibit scalability problems with program size or pro-
gram runtime.

In this work, we develop Blame Analysis as a method
to quickly identify program variables whose precision does
not affect the final result, for any given target threshold.
The analysis takes as input one or more precision require-
ments and executes the program only once while performing
shadow execution. As output, it produces a listing speci-
fying the precision requirements for different instructions in
the program, which then can be used to infer which variables
in the program can definitely be in single precision without
affecting the required accuracy for the final result.

By itself, Blame Analysis can be used to lower program
precision to a specified level. Note that, in general, lowering
precision does not necessarily result in a faster program (e.g.,
cast instructions might be introduced, which could make the
program slower than the higher-precision version). Blame
Analysis focuses on the impact in accuracy, but does not
consider the impact in the running time of the tuned pro-
gram. Because of this, the solutions produced by Blame
Analysis are not guaranteed to improve program perfor-
mance, and thus a triage by programmers is required.

Blame Analysis can also be used in conjunction with
search-based tools, as a pre-processing stage to reduce the
search space. In the case of Precimonious, this approach
has great potential to shorten the analysis time while obtain-
ing a good solution. Figure 1 shows how removing variables
from the search space affects the analysis time for the blas

program from the GSL library [11], for the target precision
10−10. The blas program performs matrix multiplication,
and it declares 17 floating-point variables. As shown at the
rightmost point in Figure 1, knowing a priori that seven out
of 17 floating-point variables can be safely allocated as float
reduces the Precimonious analysis time from 2.3 hours to
only 35 minutes. This simple filtering accounts for a 4×
speedup in analysis time.

In this paper, we evaluate the efficacy of Blame Analysis
in terms of analysis overhead and quality of solution in both
settings: 1) applied by itself; and 2) as a pre-processing stage
for Precimonious.

3. BLAME ANALYSIS
Our implementation of Blame Analysis consists of two

main components: an instrumentation component, and an
integrated online Blame Analysis algorithm. Blame Anal-
ysis is performed side-by-side with the program execution
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Figure 1: The effect of reducing Precimonious search space
on analysis time for the blas benchmark (error threshold
10−10). The horizontal axis shows the number of variables
removed from the search space. The vertical axis shows
analysis time in seconds. In this graph, the lower the curve
the more efficient the analysis becomes.

through the instrumentation. For each instruction, e.g. add,
the Blame Analysis performs the instruction multiple times,
each time using different precisions for the operands (e.g.
double, float, double truncated to 10 digits, double trun-
cated to 8 digits, etc.). The analysis checks the results to find
which combinations of precisions for the operands satisfy a
given precision requirement for the result. The satisfying
precision combinations are recorded. The Blame Analy-
sis algorithm maintains and updates a blame set for each
instruction. The blame set associated with each instruction
specifies the precision requirements for all operands such
that the target instruction has the required precision. At
the end of the analysis we collect all the variables that have
been determined to be in single precision in all the relevant
blame sets. These variables constitute the result of precision
tuning and can also be removed from the Precimonious
search space.

3.1 Blame by Example
Consider the example program in Figure 2 which pro-

duces a result on line 24. When written using only dou-

ble precision variables the result is res = 0.5000000113.
When executed solely in single precision, the result is res

= 0.4999980927. Assuming that we are interested in up
to 8 digits of accuracy, the required result would be res =
0.50000001xy, where x and y can be any decimal digits.
For each instruction in the program, Blame Analysis de-
termines the precision that the corresponding operands are
required to carry in order for its result to be accurate to
a given precision. In this example, we consider three preci-
sions: fl (float), db (double) and db8 (accurate up to 8 digits
compared to the double precision value). More specifically,
the value in precision db8 represents a value that agrees with
the value obtained when double precision is used throughout
the entire program in 8 significant digits. Formally, such a
value can be obtained from the following procedure. Let v
be the value obtained when double precision is used through-
out the entire program, and v8 is the value of v in precision
db8. According to the IEEE 754-2008 standard, the binary
representation of v has 52 significand bits. We first find the
number of bits that corresponds to 8 significant decimal dig-
its in these 52 significand bits. The number of bits can be

1 double mpow(double a, double factor, int n) {
2 double res = factor;
3 int i;
4 for (i = 0; i < n; i++) {
5 res = res * a;
6 }
7 return res;
8 }
9

10 int main() {
11 double a = 1.84089642;
12 double res, t1, t2, t3, t4;
13 double r1, r2, r3;
14

15 t1 = 4*a;
16 t2 = mpow(a, 6, 2);
17 t3 = mpow(a, 4, 3);
18 t4 = mpow(a, 1, 4);
19

20 /* res = a^4 - 4*a^3 + 6*a^2 - 4*a + 1 */
21 r1 = t4 - t3;
22 r2 = r1 + t2;
23 r3 = r2 - t1;
24 res = r3 + 1;
25

26 printf("res = %.10f\n", res);
27 return 0;
28 }

Figure 2: Example

Table 1: The r3 = r2 - t1 statement executed when
operands have different precisions. The column Prec shows
the precisions used for the operands (fl corresponds to float,
db to double, and db8 is a value accurate up to 8 digits).
Columns r2 and t1 show the values for the operands in the
corresponding precisions. Column r3 shows the result for
the subtraction. Finally, column S? shows whether the re-
sult satisfies the given precision requirement.

Prec r2 t1 r3 S?

(fl,fl) 6.8635854721 7.3635854721 -0.5000000000 No
(fl,db8) 6.8635854721 7.3635856000 -0.5000001279 No
(fl,db) 6.8635854721 7.3635856800 -0.5000002079 No
(db8,fl) 6.8635856000 7.3635854721 -0.4999998721 No
(db8,db8) 6.8635856000 7.3635856000 -0.5000000000 No
. . . . . . . . . . . . . . .
(db,db) 6.8635856913 7.3635856800 -0.4999999887 Yes

computed as lg(108) = 26.57 bits. We therefore keep the
27 significant bits in the 52 significand bits, and set other
bits in the significand to 0 to obtain the value v8. Similarly,
if we are interested in 4, 6, or 10 significant decimal digits,
we can keep 13, 19, or 33 significant bits in the significand
respectively, and set other bits to 0.

Consider the statement on line 23: r3 = r2 - t1. Since
the double value of r3 is -0.4999999887, this means that
we require r3 to be -0.49999998 (i.e., the value matches to
8 significant digits). In order to determine the precision re-
quirement for the two operands (r2 and t1), we perform the
subtraction operation with operands in all considered preci-
sions. Table 1 shows some of the precision combinations we
use for the operands. For example, (fl, db8) means that r2

has float precision, and t1 has db8 precision. For this partic-
ular statement, all but one operand precision combinations
fail. Only until we try (db, db), then we obtain a result that
satisfies the precision requirement for the result (see last row
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of Table 1). Blame Analysis will record that the precision
requirement for the operands in the statement on line 23 is
(db, db), when the result is required to have precision db8.

Statements that occur in loops are executed more than
once, such as line 5: res = res * a. Assume we also re-
quire precision db8 for the result of this operation. The first
time we encounter the statement, the analysis records the
double values for the operands and the result (6.0000000000,
1.8408964200, 11.0453785200). The algorithm tries differ-
ent precision combinations for the operands, and determines
that precision (fl, db8) suffices. The second time the state-
ment is encountered, the analysis records new double val-
ues (11.0453785200, 1.8408964200, 20.3333977750). After
trying all precision combinations for the operands, it is de-
termined that this time the precision required is (db, db8),
which is different from the requirement set the first time
the statement was examined. At this point, it is necessary
to merge both of these precision requirements to obtain a
unified requirement. In Blame Analysis, the merge oper-
ation over-approximates the precision requirements. In this
example, merging (fl, db8) and (db, db8) would result in the
precision requirement (db, db8).

Finally, after computing the precision requirements for
every instruction in the program, the analysis performs a
backward pass starting from the target statement on line
24. The pass finds the program dependencies, and collects
all variables that are determined to be in single precision.
Concretely, if we require the final result computed on line 24
to be accurate to 8 digits db8, the backward pass finds that
the statement on line 24 depends on statement on line 23,
which depends on statements on lines 22 and 15, and so on.
The analysis collects the variables that can be allocated in
single precision based on the program dependencies. In this
example, only variable factor in function mpow is collected
because it is the only variable that can be single precision (it
always stores integer constants which do not require double
precision).

In the rest of this section, we formally describe our Blame
Analysis algorithm and its implementation. Our imple-
mentation of Blame Analysis consists of two main com-
ponents: a shadow execution engine for performing single
and double precision computation side-by-side with the con-
crete execution (Section 3.2), and an online Blame Anal-
ysis algorithm integrated inside the shadow execution run-
time (Section 3.3). Finally, we present some heuristics and
optimizations in Section 3.4.

3.2 Shadow Execution
Figure 3 introduces a kernel language used to formally de-

scribe our algorithm. The language includes standard arith-
metic and boolean operation instructions. It also includes
an assignment statement which assigns a constant value to
a variable. Other instructions include if-goto and native
function call instructions such as sin, cos and fabs.

In our shadow execution engine, each concrete floating-
point value in the program has an associated shadow value.
A shadow value associated with a concrete value carries
two values corresponding to the concrete value when the
program is computed entirely in single or double precision.
We will represent a shadow value of a value v as {single :
vsingle, double : vdouble}, where vsingle and vdouble are the
values corresponding to v when the program is computed
entirely in single or double precision.

Pgm ::= (L : Instr)∗
Instr ::= x = y aop z | x = y bop z |

if x goto L |
x = nativefun(y)| x = c

aop ::= + | − | ∗ | /
bop ::= = | 6= | < | ≤

nativefun ::= sin | cos | fabs
L ∈ Labels x, y, z ∈ V ars c ∈ Consts

Figure 3: Kernel Language

Procedure FAddShadow
Inputs
l : x = y + z : instruction
Outputs
Updating the shadow memory M and the label map LM
Method

1 {single: ysingle, double: ydouble} = M[&y]
2 {single: zsingle, double: zdouble} = M[&z]
3 M[&x] = {single: ysingle + zsingle, double: ydouble + zdouble}
4 LM[&x] = l

Figure 4: Shadow Execution of fadd Instruction

In our implementation, the shadow execution is performed
side-by-side with the concrete execution. Our implementa-
tion of shadow execution is based on instrumentation. We
instrument callbacks for all floating-point instructions in the
program. The shadow execution runtime interprets the call-
backs following the same semantics of the corresponding in-
structions, however, it computes shadow values rather than
concrete values.

Let A be the set of all memory addresses used by the
program, S be the set of all shadow values associated with
the concrete values computed by the program, and L be
the set of labels of all instructions in the program. Shadow
execution maintains two data-structures:

• a shadow memory M that maps a memory address
to a shadow value, i.e. M : A → S. If M(a) = s for
some memory address a, then it denotes that the value
stored at address a has the associated shadow value s,

• a label map LM that maps a memory address to an
instruction label, i.e. LM : A → L. If LM(a) = l for
some memory address a, then it denotes that the value
stored at address a was last updated by the instruction
labeled l.

As an example, Figure 4 shows how M and LM are up-
dated when an fadd instruction l : x = y + z is executed.
In this example, x, y, z are variables and l is an instruction
label. We also denote &x,&y,&z as the addresses of the
variables x, y, z, respectively, in that state. In this example,
the procedure FAddShadow is the callback associated with the
fadd instruction. The procedure re-interprets the semantics
of the fadd instruction (line 3), but uses the shadow val-
ues for the corresponding operands (obtained on lines 1 and
2). Line 3 performs the additions and returns the results in
the same precision as the operands. The label map LM is
updated on line 4 to record that x was last updated at the
instruction labeled l.

3.3 Building the Blame Sets
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In this section, we formally describe Blame Analysis.
Let A be the set of all memory addresses used by the pro-
gram, L be the set of labels of all instructions in the program,
P be the set of all precisions, i.e. P = {fl, db4, db6, db8, db10,
db}. Precisions fl and db stand for single and double pre-
cisions, respectively. Precisions db4, db6, db8, db10 denote
numbers that are accurate up to 4, 6, 8 and 10 digits in
double precision, respectively. We also define a total order
on precisions as follows: fl < db4 < db6 < db8 < db10 < db.
In Blame Analysis we also maintain a blame map B that
maps a pair of instruction label and precision to a set of pairs
of instruction labels and precisions, i.e., B : L×P → P(L×
P ), where P(S) denotes the power set of S. If B(`, p) =
{(`1, p1), (`2, p2)}, then it means that during an execution
if instruction labeled ` produces a value that is accurate
up to precision p, then instructions labeled `1 and `2 must
produce values that are accurate up to precision p1 and p2,
respectively.

During Blame Analysis we update the blame map on
the execution of every instruction. We initialize B to the
empty map at the beginning of an execution. We illustrate
how we update B using a simple generic instruction of the
form ` : x = f(y1, . . . , yn), where x, y1, . . . , yn are variables
and f is an operator, which could be +, −, ∗, sin, log, etc.
In an execution consider a state where this instruction gets
executed. Let us assume that &x, &y1, . . .&yn denote the
addresses of the variables x, y1, . . . , yn, respectively, in that
state.

When the instruction ` : x = f(y1, . . . , yn) is executed dur-
ing concrete execution, we also perform a side-by-side shadow
execution of the instruction to update B(`, p) for each p ∈
P as follows. We use two functions, BlameSet and merge
t, to update B(`, p). The function BlameSet receives an
instruction and a precision requirement as input, and re-
turns the precision requirements for a set of instructions.
Figure 5 shows the pseudo-code of the function BlameSet.
The function first computes the correct result by obtain-
ing the shadow value corresponding to the input instruc-
tion, and truncating the shadow value to precision p (line 1).
truncs(s,p) returns the floating-point value corresponding to
the precision p given the shadow value s. trunc(x,p) returns
x truncated to precision p. Line 2 obtains the shadow values
corresponding to all operand variables. Then, the function
finds the minimal precisions p1, . . ., pn such that if we apply
f on s1, . . ., sn truncated to precisions p1, . . ., pn, respec-
tively, then the result truncated to precision p is equal to
the correct result computed on line 1. We then pair each pi
with LM [&yi], the last instruction that computed the value
yi, and return the resulting set of pairs of instruction labels
and precisions.

The merge function t is defined as

t : P(L× P )× P(L× P )→ P(L× P )

If (`, p1), (`, p2), . . ., (`, pn) are all the pairs involving the
label ` present in LP1 or LP2, then (`,max(p1, p2, . . . , pn))
is the only pair involving ` present in (LP1 t LP2).

Given the functions BlameSet and merge t, we compute
B(`, p)t BlameSet(` : x = f(y1, . . . , yn), p) and use the re-
sulting set to update B(`, p).

At the end of an execution we get a non-empty map B.
Suppose we want to make sure that the results computed by
a given instruction labeled `out is accurate up to precision

function BlameSet
Inputs
` : x = f(y1, . . . , yn) : instruction with label `

p : precision requirement
Outputs
{(`1, p1), · · · , (`n, pn)} : precision requirements of the

instructions that computed the operands
Method

1 correct res = truncs(M [&x],p)
2 (s1, . . ., sn) = (M [&y1], . . ., M [&yn])
3 find minimal precisions p1, . . . ,pn such that the following holds:
4 (v1,. . .,vn) = (truncs(s1,p1),. . .,truncs(sn,pn))
5 trunc(f(v1,. . .,vn),p)==correct res
6 return {(LM [&y1],p1), . . ., (LM [&yn],pn)}

Figure 5: BlameSet Procedure

p. Then we want to know what should be the accuracy
of the results computed by the other instructions so that
the accuracy of the result of the instruction labeled `out is
p. We compute this using the function Accuracy(`out, p, B)
which returns a set of pairs instruction labels and precisions,
such that if (`′, p′) is present in Accuracy(`out, p, B), then
the result of executing the instruction labeled `′ must have a
precision of at least p′. Accuracy(`, p, B) can then be defined
recursively as follows.

Accuracy(`, p, B) = {(`, p)}t
⊔

(`′,p′)∈B(`,p)

Accuracy(`′, p′, B)

Once we have computed Accuracy(`out, p, B), we know that
if (`′, p′) is present in Accuracy(`out, p, B), then the instruc-
tion labeled `′ must be executed with precision at least p′ if
we want the result of executing instruction labeled `out to
have a precision p.

3.4 Implementation Optimizations
To attain scalability for large or long running programs,

the implementation of Blame Analysis has to address both
space and time optimization concerns and we have experi-
mented with offline and online analyses.

Offline Blame Analysis first collects the complete ex-
ecution trace, and builds the blame set for each executed
instruction. As each instruction is examined only once,
merging of operand precision is not required. Thus, when
compared to the online version, the offline approach exhibits
lower analysis overhead per instruction, as well as being able
to produce better quality solutions. However, the size of the
execution trace and the blame function explodes for large
inputs and long running programs. For example, when run-
ning offline Blame Analysis on the ep NAS [26] benchmark
with input class1 S, offline Blame Analysis returns an out
of memory error code after using all 256 GB memory in our
system.

Our implementation of online Blame Analysis is more
memory efficient because the size of the blame sets is bounded
by the number of static instructions in the program. As
shown in Section 4.2, the maximum analysis working set
size is 81 MB, in case of program ep. On the other hand,
the information for each instruction has to be merged across
all its dynamic invocations and the online analysis has to
be further optimized for speed. In our implementation, we
allow developers to specify what part of the program they

1Class S is a small input, designed for serial execution.
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are interested to analyze. For short running programs, such
as functions within the GSL [11] library, examining all in-
structions is feasible. Most long running scientific programs
fortunately use iterative solvers, rather than direct solvers.
In this case, analyzing the last few algorithmic iterations is
likely to lead to a good solution, given that precision re-
quirements are increased towards the end of the execution.
This is the case in the NAS benchmarks we have considered.
If no options are specified, Blame Analysis by default will
be performed throughout the entire program execution.

Overall, our results indicate that offline Blame Analysis
is high in space usage but fast (lower overhead per instruc-
tion) and produces a better solution than the online version.
Online Blame Analysis is low in space usage, and worse in
running time and solution quality than the offline version.
For brevity, all the results reported in the rest of this paper
are obtained using the online analysis.

4. EXPERIMENTAL EVALUATION
The Blame Analysis architecture is described in Fig-

ure 6. We buid the analysis on top of the LLVM compiler
infrastructure [20]. The analysis takes as input: (1) LLVM
bitcode of the program under analysis, (2) a set of test in-
puts, and (3) analysis input parameters that include the tar-
get instruction and the desired error threshold(s). We use
the original Precimonious benchmarks which have been
modified by experts to provide acceptability criteria for the
result precision. For Blame Analysis we select the ac-
ceptability code developed for Precimonious as the target
instruction set. Thus, the results provided by both analyses
always satisfy the developer specified precision criteria.

The analysis result consists of the set of variables that
can be in single precision. In this section, we present the
evaluation of Blame Analysis by itself, as well as when
used as a pre-processing stage for Precimonious. We refer
to the latter as Blame + Precimonious. We compare this
combined approach with using Precimonious alone, and
perform an evaluation in terms of the analysis running time,
and the impact of the analysis results in improving program
performance.

4.1 Experiment Setup
We present results for eight programs from the GSL li-

brary [11] and two programs from the NAS parallel bench-
marks [26]. We use Clang with no-optimization 2 and
a Python-wrapper [24] to build whole-program (or whole-
library) LLVM bitcode. Note that we do apply optimization
level -O2 when performing final performance measurements
on the tuned programs. We run our experiments on an In-
tel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz 8-core machine
running Linux with 256GB RAM.

For the NAS parallel benchmarks (programs ep and cg),
we use the provided input Class A. For other programs, we
generate 1000 random floating-point inputs, which we clas-
sify into groups based on code coverage. We then pick one
input from each group, i.e., we want to maximize code cov-
erage while minimizing the number of inputs to consider.
We log and read the inputs in hexadecimal format to ensure
that the inputs generated and the inputs used match at the

2Optimization sometimes removes floating-point variables,
which causes the set of variables at the bitcode level to differ
from the variables at the source code level.

Table 3: Speedup observed after precision tuning using con-
figurations produced by Blame + Precimonious (B+P)
and Precimonious alone (P)

Threshold 10−4 Threshold 10−6

Program B+P P B+P P

bessel 0.0% 0.0% 0.0% 0.0%
gaussian 0.0% 0.0% 0.0% 0.0%
roots 0.0% 0.0% 0.0% 0.0%
polyroots 0.4% 0.0% 0.4% 0.0%
rootnewt 0.0% 0.0% 0.0% 0.0%
sum 39.9% 39.9% 39.9% 0.0%
fft 8.3% 8.3% 8.3% 8.3%
blas 5.1% 5.1% 5.1% 5.1%
ep 0.6% 0.0% 0.6% 0.0%
cg 7.7% 7.7% 7.9% 7.9%

Threshold 10−8 Threshold 10−10

Program B+P P B+P P

bessel 0.0% 0.0% 0.0% 0.0%
gaussian 0.0% 0.0% 0.0% 0.0%
roots 0.0% 0.0% 0.0% 0.0%
polyroots 0.4% 0.0% 0.4% 0.0%
rootnewt 0.0% 0.0% 0.0% 0.0%
sum 39.9% 0.0% 0.0% 0.0%
fft 0.0% 0.0% 0.0% 0.0%
blas 0.0% 0.0% 0.0% 0.0%
ep 0.6% 0.0% - -
cg 7.9% 7.4% 7.9% 7.9%

Table 4: Average analysis time speedup of Blame Analysis
compared to Precimonious

Program Speedup Program Speedup

bessel 22.48× sum 1.85×
gaussian 1.45× fft 1.54×
roots 18.32× blas 2.11×
polyroots 1.54× ep 1.23×
rootnewt 38.42× cg 0.99×

bit level.
In our experiments, we use error thresholds 10−4, 10−6,

10−8, and 10−10, which correspond to 4, 6, 8 and 10 digits of
accuracy, respectively. Additionally, for NAS programs ep

and cg, we configure Blame Analysis to consider only the
last 10% of the executed instructions. For the rest of the
programs, Blame Analysis considers all the instructions
executed.

4.2 Analysis Running Time and Memory
This section compares the performance of Blame Analy-

sis and its combination with Precimonious. We also com-
pare the online and offline versions of Blame Analysis in
terms of memory usage.

Blame Analysis

By itself, Blame Analysis introduces up to 50× slowdown,
which is comparable to the run-time overhead reported by
widely-used instrumentation-based tools such as Valgrind [21]
and Jalangi [28]. Table 5 shows the overhead for programs
cg and ep. For the rest of our benchmarks, the overhead is
relatively negligible (< 1 second).

Blame + Precimonious

To measure the analysis time of the combined analyses, we
add the analysis time of Blame Analysis and the search
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Table 2: Configurations found by Blame Analysis (B), Blame + Precimonious (B+P), and Precimonious alone (P). The
column Initial gives the number of floating-point variables (double D, and float F) declared in the programs. For each selected
error threshold, we show the type configuration found by each of the three analyses B, B+P, and P (number of variables per
precision). × denotes the cases where the tools select the original program as fastest.

Error Threshold 10−4 Error Threshold 10−6

Initial B B+P P B B+P P
Program D F D F D F D F D F D F D F

bessel 26 0 1 25 × × × × 1 25 × × × ×
gaussian 56 0 54 2 × × × × 54 2 × × × ×
roots 16 0 1 15 × × × × 1 15 × × × ×
polyroots 31 0 10 21 10 21 × × 10 21 10 21 × ×
rootnewt 14 0 1 13 × × × × 1 13 × × × ×
sum 34 0 24 10 11 23 11 23 24 10 11 23 × ×
fft 22 0 16 6 0 22 0 22 16 6 0 22 0 22
blas 17 0 1 16 0 17 0 17 1 16 0 17 0 17
ep 45 0 42 3 42 3 × × 42 3 42 3 × ×
cg 32 0 26 6 2 30 2 30 28 4 13 19 13 19

Error Threshold 10−8 Error Threshold 10−10

Initial B B+P P B B+P P
Program D F D F D F D F D F D F D F

bessel 26 0 25 1 × × × × 25 1 × × × ×
gaussian 56 0 54 2 × × × × 54 2 × × × ×
roots 16 0 5 11 × × × × 5 11 × × × ×
polyroots 31 0 10 21 10 21 × × 10 21 10 21 × ×
rootnewt 14 0 5 9 × × × × 5 9 × × × ×
sum 34 0 24 10 11 23 × × 24 10 24 10 × ×
fft 22 0 16 6 × × × × 16 6 × × × ×
blas 17 0 10 7 × × × × 10 7 × × × ×
ep 45 0 42 3 42 3 × × - - - - - -
cg 32 0 28 4 16 16 12 20 28 4 16 16 16 16

Table 5: Overhead of Blame Analysis

Program Execution (sec) Analysis (sec) Overhead

cg 3.52 185.45 52.55×
ep 34.70 1699.74 48.98×

time of Precimonious for each error threshold. Figure 7
shows the analysis time of Blame + Precimonious (B+P)
and Precimonious (P) for each of our benchmarks. We use
all error thresholds for our benchmarks, except for program
ep. The original version of this program uses error threshold
10−8, thus we do not consider error threshold 10−10.

Table 4 shows the average speedup per program for all er-
ror thresholds. We observe analysis time speedups for 9 out
of 10 programs. The largest speedup observed is 38.42× and
corresponds to the analysis of program rootnewt. When-
ever we observe a large speedup, Blame Analysis removes
a large number of variables from the search space of Prec-
imonious, at least for error thresholds 10−4 and 10−6 (see
Table 2). This translates into significantly shorter analy-
sis time for Precimonious. The only experiment in which
Blame + Precimonious is slower than Precimonious on

average, is when analyzing the program cg, however the
slowdown observed is only 1%.

Our results show that Blame + Precimonious is faster
than Precimonious in 31 out of 36 experiments. In gen-
eral, we would expect that as variables are removed from
the search space, the overall analysis time will be reduced.
However, this is not necessarily true, especially when very
few variables are removed. In some cases, removing variables
from the search space can alter the search path of Preci-
monious, which results in a slower analysis time. For exam-
ple, in the experiment with error threshold 10−4 for gaus-

sian, Blame Analysis removes only two variables from the
search space (see Table 2), a small reduction that changes
the search path and actually slows down the analysis. For
programs ep and cg, the search space reduction results in
analysis time speedup for Precimonious. However, the
overhead of Blame Analysis causes the combined Blame
+ Precimonious running time to be slower than Prec-
imonious when using error thresholds 10−4 and 10−6 for
programs ep and cg, respectively (see Figure 8).
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Figure 8: Analysis time breakdown for Blame + Precimo-
nious (B+P) and Precimonious (P) for two NAS bench-
mark programs

Memory
In our experiments, the online version of Blame Analysis
uses up to 81 MB of memory. The most expensive bench-
mark in terms of analysis memory usage is program ep. For
this program, the offline version of the analysis runs out
memory (256 GB).

4.3 Analysis Results
Table 2 shows the type configurations found by Blame

Analysis (B), Blame + Precimonious (B+P) and Prec-
imonious (P), which consist of the numbers of variables in
double precision (D) and single precision (F). It also shows
the initial type configuration for the original program. Our
evaluation shows that Blame Analysis is effective in low-
ering precision. In particular, in all 39 experiments (4 error
thresholds for 9 programs, and 3 error thresholds for 1 pro-
gram), Blame Analysis successfully identifies at least one
variable as float. If we consider the number of variables
removed in all 39 experiments, Blame Analysis removes
from the search space 39.85% of the variables on average,
with a median of 28.34%.

The type configurations proposed by Blame + Preci-
monious and Precimonious agree in 28 out of 39 exper-
iments, and differ in 11 experiments. Table 3 shows the
speedup observed when we tune the programs according to
these type configurations. In all 11 cases in which the two
configurations differ, the configuration proposed by Blame
+ Precimonious produces the best performance improve-
ment. In particular, in three cases we observe 39.9% addi-
tional speedup.

In 31 out of 39 experiments, Blame + Precimonious
finds configurations that differ from the configurations sug-
gested by Blame Analysis alone. Among those, 9 exper-
iments produce a configuration that is different from the
original program. This shows that our analysis is conserva-
tive and Precimonious is still useful in further improving
configurations found by Blame Analysis alone.

Note that for Blame Analysis, we have reported results
only for the online version of the analysis. Our experi-
ments indicate that the offline version has memory scala-
bility problems and while its solutions sometimes are better
in terms of the number of variables that can be lowered to
single precision, it is not necessarily better at reducing anal-
ysis running time, or the running time of the tuned program.

5. DISCUSSION
While very useful, automated tools for floating-point pre-

cision tuning have to overcome scalability concerns. As it
adds a constant overhead per instruction, the scalability of
our single-pass Blame Analysis is determined solely by the
program runtime. The scalability of Precimonious is deter-
mined by both program runtime and the number of variables
in the program. We believe that our approach uncovers very
exciting potential for the realization of tools able to handle
large codes. There are several directions to improve the ef-
ficacy of Blame Analysis as a standalone tool, as well as
a filter for Precimonious.

For this study, we used four intermediate precisions, db4,
db6, db8, and db10 to track precision requirements during the
analysis. This proved a good trade-off between the quality of
the solution and runtime overhead. For some programs, in-
creasing the granularity of intermediate precisions may lead
to more variables kept in low precision.

Another direction is to use Blame Analysis as an intra-
procedural analysis, rather than an inter-procedural analy-
sis as presented in this paper. Concretely, we can apply it
on each procedure and use the configurations inferred for
each procedure to infer the configuration for the entire pro-
gram. Doing so will enable the opportunity for parallelism
and might greatly improve the analysis time in modular pro-
grams.

6. RELATED WORK
Precimonious [25] is a dynamic analysis tool for tun-

ing floating-point precision. It employs an efficient Delta-
Debugging based method to search through the program
variable and function space to find a program that uses less
precision and runs faster than the original program. In-
dependently developed of Precimonious, Lam et al. also
proposes a framework for finding mixed-precision floating-
point computation [18]. Lam’s approach uses a brute-force
algorithm to find double precision instructions that can be
replaced by single instructions. Their goal is to use as many
single instructions in place of double instructions as possi-
ble, but not explicitly consider speedup as a goal. Blame
Analysis differs from Precimonious and Lam’s framework
in that it performs a white-box analysis on the set of instruc-
tions executed by the program under analysis, rather than
through searching. Thus, Blame Analysis is not bounded
by the exponential size of the variable or instruction search
space. Similar to Lam’s framework, the goal of Blame
Analysis is to minimize the use of double precision in the
program under analysis.

Darulova et. al [13] develop a method for compiling a real-
valued implementation program into a finite-precision imple-
mentation program, such that the finite-precision implemen-
tation program meets all desired precision with respect to
the real numbers, however the approach does not support
mixed precision. Schkufza et. al [27] develops a method
for optimization of floating-point programs using stochastic
search by randomly applying a variety of program transfor-
mations, which sacrifice bit-wise precision in favor of per-
formance. FloatWatch [8] is a dynamic execution profiling
tool for floating-point programs which is designed to identify
instructions that can be computed in a lower precision by
computing the overall range of values for each instruction of
interest. As with other tools described in this paper, all the
above also face scalability challenges.

Darulova and Kuncak [12] also implemented a dynamic
range analysis feature for the Scala language that could be
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used for precision tuning purposes, by first computing a dy-
namic range for each instruction of interest and then tun-
ing the precision based on the computed range, similar to
FloatWatch. However, range analysis often incurs overesti-
mates too large to be useful for precision tuning analysis.
Gappa [14] is another tool that uses range analysis to verify
and prove formal properties of floating-point programs. One
could use Gappa to verify ranges for certain program vari-
ables and expressions, and then choose their appropriate pre-
cisions. Nevertheless, Gappa scales only to small programs
with simple structures and several hundreds of operations,
and thus is used mostly for verifying elementary functions.

A large body of work exists on accuracy analysis [6, 4,
5, 19, 15]. Benz et al. [6] present a dynamic approach
that consists on computing every floating-point instructions
side-by-side in higher precision, storing the higher precision
values in shadow variables. FPInst [2] is another tool that
computes floating point errors for the purpose for detecting
accuracy problem. It also computes a shadow value side-
by-side, but it stores an absolute error in double precision
instead.

Another large area of research focused on improving per-
formance is autotuning [7, 16, 23, 29, 30]. However, no
previous work has tried to tune floating-point precision as
discussed in this paper. Finally, our work on Blame Anal-
ysis is related to other dynamic analysis tools that employ
shadow execution and instrumentation [28, 21, 22, 9]. These
tools, however, are designed as general dynamic analysis
frameworks rather than specializing in analyzing floating-
point programs like ours.

7. CONCLUSION
We introduce a novel dynamic analysis designed to tune

the precision of floating-point programs. Our implementa-
tion uses a shadow execution engine and when applied to
a set of ten programs it is able to compute a solution with
at most 50× runtime overhead. Our workload contains a
combination of small to medium size programs, some that
are long running. This is encouraging and similar to other
widely-used dynamic analysis tools, such as Valgrind. The
code is open source and available online3.

When used by itself, Blame Analysis is able to lower
the precision for all tests, but the results do not necessar-
ily translate into execution time improvement. The largest
impact is observed when using our analysis as a filter to
prune the inputs to another floating-point tuning tool which
searches through the variable space. In this case, Blame
Analysis reduces the analysis time up to 38× and enables
the tool to find new solutions that improve program execu-
tion time by as much as 39.9%.

We believe that our results are very encouraging and in-
dicate that floating-point tuning of entire applications will
become feasible in the near future. As we now understand
the more subtle behavior of Blame Analysis, we believe
we can improve both analysis speed and the quality of the
solution. It remains to be seen if this approach to develop
fast but conservative analyses can supplant the existing slow
but powerful search-based methods. Nevertheless, our work
proves that using a fast “imprecise” analysis to bootstrap
another slow but precise analysis can provide a practical so-
lution to tuning floating point in large code bases.

3URL witheld for blind review.
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Figure 7: Analysis time comparison between Precimonious (P) and Blame + Precimonious (B+P). The vertical axis
shows the analysis time. The horizontal axis shows the error thresholds used in each experiment. In these graphs, a lower
curve means more efficient.
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